Learning to Imagine Manipulation Goals for Robot Task Planning

نویسندگان

  • Chris Paxton
  • Kapil D. Katyal
  • Christian Rupprecht
  • Raman Arora
  • Gregory D. Hager
چکیده

Prospection is an important part of how humans come up with new task plans, but has not been explored in depth in robotics. Predicting multiple task-level is a challenging problem that involves capturing both task semantics and continuous variability over the state of the world. Ideally, we would combine the ability of machine learning to leverage big data for learning the semantics of a task, while using techniques from task planning to reliably generalize to new environment. In this work, we propose a method for learning a model encoding just such a representation for task planning. We learn a neural net that encodes the k most likely outcomes from high level actions from a given world. Our approach creates comprehensible task plans that allow us to predict changes to the environment many time steps into the future. We demonstrate this approach via application to a stacking task in a cluttered environment, where the robot must select between different colored blocks while avoiding obstacles, in order to perform a task. We also show results on a simple navigation task. Our algorithm generates realistic image and pose predictions at multiple points in a given task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

Planning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions

This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...

متن کامل

Task Complexity Manipulation and EFL learners’ interactions in the process of collaborative pre-planning

Today, learners’ interaction and collaborative task performance have attracted increasing attention from language teachers and researchers. The present study investigated whether collaborative pre-planning, task complexity manipulation, and language proficiency level play a role in learners’ interactions. To this end, 128 EFL learners from two different language proficiency levels carried out t...

متن کامل

Integrated robot task and motion planning in belief space

In this paper, we describe an integrated strategy for planning, perception, state-estimation and action in complex mobile manipulation domains. The strategy is based on planning in the belief space of probability distribution over states. Our planning approach is based on hierarchical goal regression (pre-image back-chaining). We develop a vocabulary of fluents that describe sets of belief stat...

متن کامل

Skill-Based Bimanual Manipulation Planning

The paper focuses on specification and utilization of manipulation skills to facilitate programming of bimanual manipulation tasks. Manipulation skills are actions to reach predefined goals. They constitute an interface between lowlevel constraint-based task specification and high level symbolic task planning. The task of the robot can be decomposed into subtasks that can be resolved using mani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.02783  شماره 

صفحات  -

تاریخ انتشار 2017